Extent of Mitochondrial Hexokinase II Dissociation During Ischemia Correlates With Mitochondrial Cytochrome c Release, Reactive Oxygen Species Production, and Infarct Size on Reperfusion
نویسندگان
چکیده
BACKGROUND The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. METHODS AND RESULTS Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. CONCLUSIONS We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.
منابع مشابه
The role of hexokinase in cardioprotection – mechanism and potential for translation
Mitochondrial permeability transition pore (mPTP) opening plays a critical role in cardiac reperfusion injury and its prevention is cardioprotective. Tumour cell mitochondria usually have high levels of hexokinase isoform 2 (HK2) bound to their outer mitochondrial membranes (OMM) and HK2 binding to heart mitochondria has also been implicated in resistance to reperfusion injury. HK2 dissociates ...
متن کاملReduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors.
Ischemia and reperfusion both contribute to tissue damage after myocardial infarction. Although many drugs have been shown to reduce infarct size when administered before ischemia, few have been shown to be effective when administered at reperfusion. Moreover, although it is generally accepted that a burst of reactive oxygen species (ROS) occurs at the onset of reperfusion and contributes to ti...
متن کاملMff‐Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury via Induction of mROS‐Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation‐Involved mPTP Opening
BACKGROUND The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse. METHODS AND RESULTS In wild-type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular isc...
متن کاملReversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion.
Cardiac mitochondria sustain damage during ischemia and reperfusion, contributing to cell death. The reversible blockade of electron transport during ischemia with amobarbital, an inhibitor at the rotenone site of complex I, protects mitochondria against ischemic damage. Amobarbital treatment immediately before ischemia was used to test the hypothesis that damage to mitochondrial respiration oc...
متن کاملReal-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning
Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012